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Abstract

The surface impedance of a coating is investigated and defined. The surface impedance is governed largely by the bulk

modulus and the associated loss factor. The bulk modulus is but one of a number of moduli that characterize the properties

of a coating. The bulk modulus and the shear modulus are the most commonly recognized. The normalized forms of the

moduli are related by functions of Poisson’s ratio. The normalization of a modulus is by the value of the modulus at the

lowest frequency of interest. Were Poisson’s ratio to be also independent of frequency, the normalized moduli, as functions

of frequency, would all be identical. Since the loss factor that is associated with a normalized modulus is causal, when the

normalized moduli are identical so are the associated loss factors. Were Poisson’s ratio to be dependent on frequency,

the normalized moduli, as functions of frequency, might be regionally or even universally different, and so would be the

associated loss factors. Primitive descriptions of typical normalized moduli and the associated loss factors illustrate the

design of a coating. The provided data set of the bulk and shear moduli of a coating are employed to test these analytical

descriptions of the coating. Of particular interest in these tests is the causal relationship between a normalized modulus and

the associated loss factor.

Published by Elsevier Ltd.
1. Introduction

Coatings are placed on wet surfaces to isolate them from the fluid in which they are immersed. A coating not
only provides compliance, which is the mechanism that isolates, but it also provides a characteristic damping
term. Occasionally, the damping that is contributed by the coating is crucial to its use. In this paper, a
suggestion is made as to how to test cursorily the characteristics that control the mechanical properties of the
coating and learn whether these characteristics admit to general design criteria. The tests are conducted so that
if these design criteria are not met, the tests may reveal remedial measures. The simplicity inherent in these
tests will further reveal whether these remedial measures may be implemented without reverting to radical
design changes. Changes of this kind are both time consuming and costly.

A coating is largely characterized by the surface impedance that it contributes to the structure in which the
coating is a component. A structure of this kind and the position of the coating therein are sketched in Fig. 1.
Two variations on the theme, for such a structure and the coating that it accommodates, are sketched in
Figs. 1a and b. The circuit diagrams for the analyses of these structures are presented in Figs. 2a and b,
ee front matter Published by Elsevier Ltd.
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Fig. 1. Coated plate immersed in fluid media: Fluid no. 1 atop and fluid no. 2 at the bottom: (a) the coating is attached to a plate on one

side and faces fluid no. 1 on the other, and (b) the coatings are attached to a plate on both sides; the top surface of the top coating faces

fluid no. 1 and the bottom surface of the bottom coating faces fluid no. 2.
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respectively. Using these circuit diagrams the analytical accountings may be derived. These derivations are
presented in Table 1. Interest in this paper, however, is reserved largely for consideration and analysis of the
surface impedance zc(k, o) of a coating, which may be cast in the form

Zcðk;oÞ ¼ ðioÞ
�1
½Bðk;oÞ=tc�½1þ iZcðk;oÞ�, (1)

where (k, o) is the spectral vector spanning the surface of the structure, k the wavevector and o the frequency,
tc the thickness, B(k, o) the bulk modulus and Zc(k, o) the indigenous loss factor associated with this bulk
modulus of the coating. The role that the coating plays as a component in a structural system; e.g., as depicted
in Figs. 1 and 2, is considered under separate cover [1]. The parametric descriptions involved in Eq. (1) are
lumped in a manner that renders Eq. (1) simple and algebraic. In the resulting equation, the dependence on the
wavevector k is suppressed. The validity for this suppression requires the spatial variability in the coating to be
small. If b denotes a typical spatial variability the suppression is validated provided bjkj51. Waves
propagating in the coating then sense the coating to be spatially uniform. The result of this rendering is

Zcðk;oÞ ) ZcðoÞ ¼ ðioÞ
�1
½BðoÞ=tc�½1þ iZcðoÞ�. (2a)

The properties of the coating, stated in Eq. (2a), are specified once the bulk modulus B(o), the thickness tc

and the indigenous loss factor Zc(o) are known. It is conducive to factorize the surface impedance Zc(o) of the
coating in the form

ZcðoÞ ¼ zc0ðoÞB̄ðoÞ½1þ iZcðoÞ�; Zc0ðoÞ ¼ ðioÞ
�1
ðB0=tcÞ,

B̄ðoÞ ¼ ½BðoÞ=B0�; ½qðB0Þ=qo� ¼ 0, ð2bÞ

where B̄ðoÞ is the normalized bulk modulus Zc0(o) is the nondispersive factor and B̄ðoÞ½1þ iZcðoÞ� is the
dispersive factor in the surface impedance Zc(o) of the coating. The normalizing bulk modulus B0 is the bulk
modulus B(o) at the lowest frequency of interest, which usually is a quiescent frequency region for B(o). In the
passive coating considered here the normalized bulk modulus B̄ðoÞ is a monotonically increasing function of
the normalized frequency o, and therefore B̄ðoÞ ) 1 as o) 0, where the normalizing frequency, designated
by (1/a), is yet to be judicially selected. It is established that there exists a relationship between the normalized
bulk modulus B̄ðoÞ and the associated loss factor Zc(o). The relationship demands that Zc(o) be causal to B̄ðoÞ
[2–5]. Thus, once the normalized bulk modulus B̄ðoÞ is determined, the determination of the dispersive factor
in Zc(o) follows.

A coating, in general, is a multimoduli structure of which the normalized bulk modulus B̄ðoÞ and the
associated loss factor Zc(o) are more directly involved in isolating a surface from its fluid environment
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Fig. 2. Circuit diagram representations of: (a) Fig. 1a and (b) Fig. 1b.

Table 1

Surface impedance analyses of the dynamic systems: (a) the dynamic system described in Figs. 1a and 2a and (b) the dynamic system

described in Figs. 1b and 2b

(a)

Zf 1 þ Zc1 �Zc1

�Zc1 Zc1 þ Zp þ Zf 2

 !
Vf 1

Vp

 !
¼

Pe1

Pe2

 !

(b)

ðZf 1 þ Zc1Þ �Zc1 0

�Zc1 ðZc1 þ Zp þZc2Þ �Zc2

0 �Zc2 Zc2 þ Zf 2

0
B@

1
CA

Vf 1

Vp

Vf 2

0
B@

1
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0
B@

1
CA
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[cf. Figs. 1a and b]. In that sense, the normalized bulk modulus is often the prime target of the design. It is
speculated that the normalized shear modulus ḠðoÞ and the associated loss factor Zs(o) in the coating are
responsible for providing the damping that the coating avails to the surface of the plating to which it is firmly
attached. Again, Zs(o) is causal to ḠðoÞ. For this reason, the normalized shear modulus is also of significance
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in designing the properties of the coating. In this paper, a generalized normalized modulus M̄ðoÞ and the
associated loss factor Z(o) are considered and the properties of this generalized normalized modulus are
investigated. Of particular interest in these properties is the causal relationship between the normalized
modulus and the associated loss factor. The properties, it transpires, are readily particularized to a specific
normalized modulus; e.g., either to the normalized bulk modulus B̄ðoÞ or to the normalized shear modulus
ḠðoÞ. The dispersive factor of a generalized surface impedance M̄ðoÞ½1þ iZðoÞ� is on hand once the
normalized modulus M̄ðoÞ is known, since the associated loss factor Z(o) is causal to M̄ðoÞ. There is still left
open the question as to how do other normalized moduli and their associated loss factors, except for the bulk
and the shear, contribute to the function of a multimoduli structure. Answering this question may beneficially
render the coating multifunctional. This paper may even be the first step in this endeavor.

2. Normalized modulus in a coating

The description of a normalized form for a generalized lumped modulus M̄ðoÞ in a multimoduli coating
yields a ratio of rational functions, namely

M̄ðoÞ ¼ 1þ
XN

n

anðaoÞ
nþa

" #
1þ

XH
h

bhðaoÞ
hþb

" #�1
,

M̄ðaoÞ ¼ 1 when ao) 0, ð3Þ

where the an’s, bh’s, N, H, a, b and a are the design parameters. It is to be understood that the n’s and
the h’s are integers; e.g., n ¼ 0, 1, 2, y, N and h ¼ 0, 1, 2, y, H and that a and b are constants, which are not
necessarily integers and are usually confined in the range 0pa, bo1. The parameter 1/a is a normalizing
frequency, which, as already indicated, is yet to be appropriately selected. Eq. (3) may, thus, in general be quite
elaborate. Although this elaboration may occasionally be called upon, it is rarely required in practice. Often
drastic approximations suffice. Typical approximations of this kind merely require one term in the
summations in Eq. (3) and, most often than not, b and h may be set equal to (a) and (n), respectively; b ¼ a,
h ¼ n, and bn may be conveniently set equal to unity; bn ¼ 1, so that Eq. (3) becomes

M̄ðoÞ ¼ ½1þ anðaoÞ
nþa
�½1þ ðaoÞnþa��1. (4)

In Eq. (4), (an) is conditioned to exceed unity; an41, and this equation is dubbed primitive. In the primitive
equation, M̄ðoÞ starts at unity for ðaoÞ ) 0 and asymptotes to the value of (an) as ðaoÞ ) 1. This
characteristic often imitates those of many a practical normalized moduli. In the development of procedures
for testing the viability of the designs for coatings one may employ equations that are similar to the primitive
equations, à la Eq. (4). In circumstances in which design consideration exceeds those provided by the likes of
Eq. (4), a few more elements in Eq. (3) may become mandatory. Analytical procedures in these circumstances
follow, nonetheless, similar lines to those developed for the likes of Eq. (4).

One recognizes that Eq. (4) engrosses three design parameters: (1) the range parameter (an), (2) the power
index (n+a) and (3) the normalizing frequency parameter (1/a). The second of Eq. (3) reveals a silent design
parameter. This additional parameter is M0 ¼M(o) when ao) 0. The quantity M0 is the normalizing
modulus for MðoÞ; M̄ðoÞ ¼ ½MðoÞ=M0�. It is convenient to replace the parameter 1/a by an appropriately
selected normalizing frequency oM. This replacement will set a to be unity and will conveniently render the
variable o in Eq. (4) normalized.

3. Frequency normalization

There are a number of suitable normalizations of the frequency variable in the normalized modulus M̄ðoÞ,
each of them with its own advantage and convenience. Without delving presently into the reasons for selecting
the frequency normalization, it is, at this stage, merely stated that the value of the design frequency parameter
(1/a) is selected to be the normalizing frequency (oM) that yields

q ln½M̄ðoÞ�=qo
� �

¼ RðoÞ; q½oRðoÞ�=qo
� �

ðao ¼ 1Þ ¼ 0. (5)
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Clearly, it is anticipated that oR(o) as a function of (o) harbors a peak at (o/oM) ¼ 1. From Eqs. (3) and
(5), one derives

XN

n

ðnþ aÞanðaoÞ
nþa
ðnþ aÞ þ
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jþa
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hþb
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Fig. 3. Typical normalized modulus M̄ðoÞ as a function of the normalized frequency (o) for various range parameter (an) and power index

(n+a) and the normalizing frequency (oM) [cf. Eqs. (8) and (9)]: (a) (a1) ¼ (3), (n) ¼ (1) and (a) ¼ (0); (b) (a2) ¼ (3), (n) ¼ (2) and

(a) ¼ (0); (c) (a1) ¼ (3), (n) ¼ (1) and (a) ¼ (1/2); (d) (a1) ¼ (2.4), (n) ¼ (1) and (a) ¼ (1/2); and (e) (a1) ¼ (1.3), (n) ¼ (1) and (a) ¼ (1/2).
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where R̄ðaoÞ is proportional to fq½oRðoÞ=qo�g. Were the normalizing frequency oM to be the frequency that
maximizes [oR(o)], it follows that

R̄ðaoM Þ ¼ 0. (7)

Substituting the primitive Eq. (4) in Eq. (5) one derives

ðanÞðaoMÞ
2nþ2a

¼ 1 or an ¼ ½ðanÞ
1=2
ðoM Þ

nþa
��1. (8)

Eq. (4) may then be rewritten in the normalized frequency form

M̄ðoÞ ¼ ½1þ ðanÞ
1=2onþa�½1þ ð1=anÞ

1=2onþa��1,

M̄ðoÞ ) 1 when ðoÞ � 1 and M̄ðoÞ ) an when ðoÞ � 1, ð9Þ

where in Eq. (9) o is the normalized frequency variable; the frequency variable divided by the appropriate
normalizing constant frequency oM.

The typical but primitive normalized modulus M̄ðoÞ, expressed in Eq. (9), is depicted by the bold solid
curves, as a function of the normalized frequency, in Fig. 3. (The dashed and thin curves are reserved for the
renormalization of the frequency, which is explained in Section 5.) Figs. 3a and b depict Eq. (9) with a ¼ 0,
an ¼ 3, and n ¼ 1 and 2, respectively. Fig. 3c depicts Eq. (9) with a ¼ (1/2) and an ¼ 3 and n ¼ 1. It is
remarkable that these figures encompass the typical features exhibited by many of the normalized modulus
M̄ðoÞ in practical coatings designed for a variety of purposes. This statement becomes more obvious as
further variations on the theme are exemplified. In this vein, Fig. 3c is repeated in Figs. 3d and e, respectively.
In Figs. 3d and e, the standard value of (3) for the range parameter a1 are changed, respectively, to (2.4) and
(1.3). Again, the resemblance that the normalized moduli of many a coating bear to those presented in these
figures is, remarkable. On those occasions when some elements in Eq. (3) need to be used to increase the
matching, between the lumped description of a normalized modulus in an actual coating and that in a designed
coating, the procedure is merely a slight tweak that results in the addition of a set of minor design parameters
[cf. Appendix A].
4. Loss factor associated with a normalized modulus of a coating

In Eq. (2), the lumped loss factor Zc(o) associated with the bulk modulus is introduced. It transpires that
causality demands that this loss factor be related to the normalized bulk modulus B̄ðoÞ [2–5]. Invoking
causality through the Kramer–Kronig relationship, each loss factor Z(o) in the coating is thus associated with
a corresponding normalized modulus M̄ðoÞ. This association is stated in the form

ZðoÞ ¼ ðpo=4ÞRðoÞ, (10)

where R(o) is defined in Eq. (5) and Z(o) is the loss factor that is associated with the normalized modulus
M̄ðoÞ in the coating. From Eq. (3) one obtains

ZðoÞ ¼ ðp=4Þ
XN

n

ðnþ aÞanðaoÞ
nþa 1þ

XH
h

bhðaoÞ
hþb

" #(

�
XH

h

ðhþ bÞbhðaoÞ
hþb 1þ

XN

n

anðaoÞ
nþa

" #)�1

� 1þ
XN

n

anðaoÞ
nþa

" #
1þ

XH
h

bhðaoÞ
hþb

" #( )�1
. ð11Þ

Further, if Eq. (4) is substituted for M̄ðoÞ, the result of this substitution yields the associated loss factor Z(o)
in the primitive form

ZðoÞ ¼ ½ðnþ aÞp=4�ðan � 1ÞðaoÞnþaf½1þ anðaoÞ
nþa
�½1þ ðaoÞnþa�g�1. (12)
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Normalizing the frequency variable, à la Eqs. (7) and (8), one obtains

ZðoÞ ¼ ½ðnþ aÞp=4�½ðanÞ
1=2
� ð1=anÞ

1=2
�onþaf½1þ ðanÞ

1=2onþa�g

�½1þ ð1=anÞ
1=2onþa�g�1. ð13Þ

In Eq. (13), as in Eq. (9), the frequency variable (o) is connoted to be normalized by (oM).
The loss factor Z(o) stated in Eq. (13), is typically depicted by the bold solid curves, as a function of the

normalized frequency, in Fig. 4. (Again, the dashed and thin curves are reserved for the renormalization of the
frequency, which is explained in Section 5.) Figs. 4a–e pertain to the same parametric values that are employed
in Figs. 3a–e, respectively. Therefore, for example, the loss factor Z(o) depicted in Fig. 4c pertains to the
parametric values (a1) ¼ (3), (n) ¼ (1) and (a) ¼ (1/2). These parametric values are used to depict Fig. 3c. As
dictated by the second of Eq. (5) the maxima (peaks) in the primitive values of Z(o) occur on the normalized
frequency axis, conveniently, at unity.

5. Frequency renormalizations

It is imperative that one recognizes that oM is merely a convenient substitution for 1/a in Eqs. (3), (4), (6),
(11) and (12) and that 1/a, or its equivalent (oM), is a design parameter in the coating. That equivalence is
expressed in Eq. (7) and specifically for the primitive description of M̄ðoÞ in Eq. (8). The normalizing
frequency oM advantageously traces the peak value in the loss factor Z(o). Situations may arise in which the
behavior of a dynamic system that incorporates the coating may conveniently demand a frequency
normalization that is different from that of (oM). The normalizing frequency may then be changed to o0, say.
This can be accomplished by replacing o, which now stands for the frequency variable normalized by o0, by
so in Eqs. (9) and (13), where s ¼ o0/oM. This renormalization of the frequency variable merely amounts to a
frequency shift. The shift is negative if s41 and is positive if so1. Shifts of this kind are depicted, for the
normalized modulus M̄ðoÞ and the associated loss factor Z(o), in Figs. 3a–e and in Figs. 4a–e, respectively.
Negative shifts are indicated by the dashed curves and positive shifts by the thin curves.

6. The role of Poisson’s ratio

It transpires that moduli in a coating are related to each other by Poisson’s ratio (s) [6]. This statement may
be cast analytically in the form

M1ðoÞ ¼MðoÞE1ðsÞ, (14a)

where E1(s) is a function of Poisson’s ratio. For example, if M1(o) designates the shear modulus G(o) and
M(o) the bulk modulus B(o) then Eq. (14a) becomes

GðoÞ ¼ BðoÞEGðsÞ; EGðsÞ ¼ ½3ð1� 2sÞ=2ð1þ sÞ�. (14b)

It follows that if (s) is independent of the normalized frequency (o), Eq. (14) may be restated in the
normalized form

M̄1ðoÞ ¼ M̄ðoÞ; M10 ¼M0E1ðsÞ, (15a)

ḠðoÞ ¼ B̄ðoÞ; G0 ¼ B0EGðsÞ, (15b)

where the zero-subscript designation is in reference to the moduli evaluated at a vanishing normalized
frequency; o) 0. Also, as an example, for s ¼ 13/30 the value of EG(s)ffi0.14 and, therefore, for a reasonable
value of s, G05B0. One may inquire whether Poisson’s ratio, s, is inherently independent of frequency or may
there be circumstances when s may be frequency dependent enough to cause a significant mismatch between
M̄1ðoÞ and M̄ðoÞ; e.g., between ḠðoÞ and B̄ðoÞ. Even more intriguing is the question whether M̄1ðoÞ;
e.g., ḠðoÞ may, by design, be rendered significantly different from M̄ðoÞ; e.g., from B̄ðoÞ? With this difference
the loss factors contributed by each may be made to peak at different frequencies enabling the manipulation of
the indigenous damping contributed by the coating to be more versatile. At present, the answer to these
questions remains, to the authors’ knowledge, silent.
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Fig. 4. The loss factor Z(o) that is associated with the normalized modulus M̄ðoÞ as a function of the normalized frequency (o) for various
range parameter (an) and power index (n+a): (a) (a1) ¼ (3), (n) ¼ (1) and (a) ¼ (0) [cf. Fig. 3a]. (b) (a2) ¼ (3), (n) ¼ (2) and (a) ¼ (0) [cf.

Fig. 3b]. (c) (a1) ¼ (3), (n) ¼ (1) and (a) ¼ (1/2) [cf. Fig. 3c]. (d) (a1) ¼ (2.4), (n) ¼ (1) and (a) ¼ (1/2), [cf. Fig. 3d.] (e) (a1) ¼ (1.3), (n) ¼ (1)

and (a) ¼ (1/2) [cf. Fig. 3e].
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7. Asymptotic evaluations of the normalized modulus and its

7.1. Associated loss factor

Focusing again on a typical normalized modulus M̄ðoÞ one may inquire as to the sensitivity of this modulus
and its associated loss factor Z(o) to the design parameters. The inquiry is partially answered by deriving the
asymptotic evaluations of these two quantities. Using the primitive descriptions of M̄ðoÞ and Z(o), as stated in
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Eqs. (9) and (13), one derives

M̄ðoÞ ¼

1; onþa � ðanÞ
�1=2;

ðanÞ
1=2; onþa ¼ 1;

ðanÞ; onþa � ðanÞ
1=2;

8><
>: (16a2c)

ZðoÞ ¼

½ðnþ aÞp=4�½ðanÞ � 1�ð1=anÞ
1=2
ðonþaÞ; onþa � ðanÞ

�1=2;

½ðnþ aÞp=4�½ðanÞ � 1�½1þ ðanÞ
1=2
��2; onþa ¼ 1;

½ðnþ aÞp=4�½ðanÞ � 1�ð1=anÞ
1=2
ðonþaÞ

�1; onþa � ðanÞ
1=2:

8>><
>>: (17a2c)

The format of these equations; Eqs. (16) and (17), demonstrates that a typical normalized modulus M̄ðoÞ, as
a function of the normalized frequency, is influenced largely by the values of the range parameter (an) rather
than by the power index (n+a). The higher the values of (an) the higher the excursion of the normalized
modulus from unity to higher values. The excursion extends over a larger frequency range the lower
is the value of the power index (n+a) [cf. Figs. 3a–e]. On the other hand, a typical loss factor Z(o), as a
function of the normalized frequency, is influenced largely by the value of the power index (n+a). The lower
the values of (n+a) the more gentle is the decrease in the values of the loss factor as a function of the
normalized frequency, away on either side of the peak in the loss factor [cf. Figs. 4a–e]. Nonetheless,
it is imperative to understand that, both the values of M̄ðoÞ and of Z(o), are determined by expressions
that couple between the values of (an) and of (n+a); this coupling is essential in the design of the properties of
the coating.

8. The so-called wicket plot

The practitioners who design and implement the coating often meet a dilemma. The dilemma is that the
frequency characteristics of the coating; i.e., a typical normalized modulus M̄ðoÞ and the associated loss factor
Z(o), are functions of the frequency. The design of these two quantities as functions of the normalized
frequency is central. It transpires that in the properties of a coating the temperature and the frequency are
intimately related. Therefore, if the coating is to operate at different temperatures, there is a frequency shift
that needs to be applied to determine the characteristics of the coating. Can some aspects of these
characteristics of the coating be maintained independently of this shift? One aspect of this kind is afforded by
the relationship that exists between the normalized modulus M̄ðoÞ; ðM̄Þ ¼ ðM=M0Þ, and the associated loss
factor Z(o) [cf. Eqs. (9) and (13)]. An advantage is taken of the fact that the normalized frequency variable o
can be eliminated in establishing a relationship between M̄ and Z; Z ¼ ZðM̄Þ. Since this relationship is
independent of frequency, it is also independent of the temperature. The display of Z ¼ ZðM̄Þ is known as the
wicket plot [7].

In a coating that admits to a primitive description, the design of a typical normalized modulus requires
merely the specification of three vocal parameters: The range parameter; e.g., an, the power index; e.g., (n+a)
and the normalizing frequency; e.g., oM. In this coating, the relationship between the loss factor, Z, and its
normalized modulus M̄; i.e., Z ¼ ZðM̄Þ, is readily derived. Using Eqs. (9) and (13) one obtains

ZðM̄Þ ¼ ½ðnÞ þ ðaÞp=4�ðM̄ � 1Þ½ðanÞ � M̄�fM̄½ðanÞ � 1g�1. (18)

A number of asymptotic evaluations are in order

Z) ½ðnþ aÞp=4�

ðM̄ � 1Þ; 1oM̄ ) 1;

½ðanÞ
1=2
� 1�2½ðanÞ � 1��1; M̄ ) ðanÞ

1=2;

½1� ðM̄=anÞ�; ðanÞ4M̄ ) ðanÞ:

8><
>: (19a2c)

[cf. Eqs. (16) and (17)]. The wicket plot of ZðM̄Þ, as stated in Eq. (18), is illustrated in Fig. 5. In Fig. 5a, the
relevant parameters are those employed in Figs. 3b and 4b. In Fig. 5b, the relevant parameters are a1 ¼ 2.4,
n ¼ 1 and a ¼ 0 [cf. Figs. 3d and 4d]. Again, it is noted that the wicket plot for the coating that admits to a
primitive description involves merely the range parameter an and the power index (n+a). However, there is an
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[cf. Figs. 3b and 4b]; and (b) (a1) ¼ (2.4) and (n) ¼ (1).
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oblique dependence on the range of ðM̄Þ. This range is 1oM̄oan. The left end limit of unity provokes the
silent parameter M0. The dependence of Eq. (18), as one may surmise, on the normalizing frequency oM is
rendered moot. Clearly, the primitivism of the coating renders the relationship in the wicket plot simple. This
simplicity is not an essential ingredient to its establishment. Were the description of the coating to be less
primitive, the complexity of Eqs. (3), (6) and (11) could be used to establish the wicket plot nonetheless?
However, consideration of this kind is outside the scope of this paper.
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Appendix A. A case study of coating design

A case study is presented for which the designed or the measured data are provided; hereafter, referred to as
the provided data. With respect to the coatings considered in the text, this case is an extreme. Moreover, the
provided data of the bulk modulus exhibit, in the lower frequency range, a continued decrease with decrease in
frequency. The study is undertaken to show that the primitive form of the analysis in the text can sustain these
extremes. To account for the creep, in the lower frequency range, only a minor tweaking is subsequently
introduced. The provided data covers about four (4) decades on the frequency axis, covering the frequency
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range 10po/2pp105Hz. These data relate to the two prime moduli in the coating: The bulk modulus B(o)
and the shear modulus G(o). The provided data of B(o) and of G(o), on the same scale, is copied into
Fig. A1a. As the text clarifies, the analysis that determines the loss factors that are associated with these
moduli demands the normalized forms of these moduli. Preferably, but not imperatively, the normalizing
moduli are those reached by the respective moduli at very low normalized frequencies; namely, B0 ¼ Bðo� 1Þ
and G0 ¼ Gðo� 1Þ, respectively. The frequencies at which the normalizing moduli are conveniently fixed are
chosen to be equal. These normalizations yield

B̄ðoÞ ¼ ½BðoÞ=B0�; ḠðoÞ ¼ ½GðoÞ=G0�. (A.1)

It was argued, in the text, that if Poisson’s ratio (s) is frequency independent then the normalized moduli are
equal throughout the frequency range. The provided data show that

B̄ðoÞ ¼ ḠðoÞ; G0=B0 ¼ 2� 10�3 (A.2)

throughout the frequency range. The provided data for B̄ðoÞ and ḠðoÞ are given in Fig. A1b. In this figure, the
normalized moduli are expressed in terms of the normalized frequency (o); the frequency is normalized by oM.
The normalizing frequency (oM) is set to be oM=2pffi 4:7� 104 Hz and the normalized frequency covers the
range 10�5pop104. Again, Poisson’s ratio indeed appears to be independent of frequency in the entire
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normalized frequency range for which the provided data exist and, thus confirming, in this range, Eq. (A.2).
This range spans 2.1� 10�4ooo2.1. The validity of Eq. (A.2) is assumed herein and, therefore, it is sufficient
to pursue one of these two normalized moduli, the second is a duplicate of the first. Using the primitive
equation; Eq. (9), the normalized bulk modulus B̄ðoÞ is computed as a function of the normalized frequency o
and the results are depicted in Fig. A2a. The vocal parameters; an, (n+a) and oM, in these computations are
selected so that the computed data mimic the provided data where the latter are available. In this figure, the
range parameter an is maintained at 830, the power index (n+a) is maintained at 1.08; n ¼ 1 and a ¼ 0.08, and
oM/2p ¼ 4.7� 104Hz. The provided data are superposed on this figure for comparison purposes. Clearly,
with the exception of the lower normalized frequency range the match is remarkable. The mismatch at
the lower frequency range may be amplified by switching the ordinate scale from linear to log, as shown in
Fig. A2b. An attempt to correct the mismatch reveals that a tweak may be required. Before tweaking, it may
be of interest to continue the tweakless analysis. The primitive Eq. (13) is now employed to determine the loss
factor Zc(o) that is associated with the computed normalized modulus B̄ðoÞ that is depicted in Fig. A2. The
result of this determination is shown in Fig. A3. The provided data for Zc(o) is superposed on this figure. The
match between the computed data and the provided data is reasonable, but far from good. The matching fails
even in those normalized frequency regions in which there exists a remarkably satisfactory matching between
the computed and provide sets of data that pertain to the normalized modulus B̄ðoÞ; e.g., as depicted in
Fig. A2 in the vicinity of unity for the normalized frequency o. Since the computed loss factor Zc(o) is causal
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Fig. A2. Matching the computed data (dashed curve) with the provided data (solid curve) for the normalized bulk modulus B̄ðoÞ, as a
function of the normalized frequency (o). The computed data is derived of the primitive Eq. (9): (a) linear ordinate and (b) log ordinate.
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to the associated B̄ðoÞ, does the provided data of the loss factor Zc(o) reveal it to be noncausal to B̄ðoÞ? To
answer this question more definitively an attempt is made to tweak the primitive Eq. (9) in order to achieve a
better match between the computed data and the provided data with respect to the normalized bulk modulus
B̄ðoÞ. Reference to Eqs. (3) and (8) suggest that a suitable tweak for B̄ðoÞ in the lower frequency range would
be of the form

B̄ðoÞ ¼ ½1þ ðanÞ
1=2onþa þ gnþa

m ðoÞ�½1þ ð1=anÞ
1=2onþa��1,

gnþa
m ðoÞ ¼ gfðanÞ

1=2onþagð1=mÞ, ðA:3Þ

where g and m are the minor design parameters in the presence of the vocal design parameters an, (n+a) and
oM. With the tweak described in Eq. (A.3) the match between the computed data, based on this equation, and
the provided data is shown in Fig. A4. The vocal parameters an, (n+a) and oM are selected to be an ¼ 600,
(n+a) ¼ 1.17; n ¼ 1 and a ¼ (0.17), and oM/2p ¼ 4.7� 104Hz and the tweak parameters (g) and (m) are
selected to be g ¼ 1.55 and m ¼ 3. The match between the two data sets in Fig. A4 is remarkable throughout
the frequency range for which the provided data are available. Again, in Fig. A4a the ordinate is chosen to be
linear and in Fig. A4b it is log [cf. Fig. A2]. The causal loss factor Zc(o) associated with the normalized bulk
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Fig. A5. Comparing the computed data (dashed curve) with the provided data (solid curve) for the loss factor Zc(o) and the wicket plot

that are associated with the normalized bulk modulus B̄ðoÞ. The computed data is derived of the causality of the tweaked normalized bulk

modulus B̄ðoÞ, as specified in Eq. (A.3). The expression for the so computed loss factor is specified in Eq. (A.4): (a) the loss factor Zc(o) as
a function of the normalized frequency (o) and (b) the loss factor ZcðB̄Þ as a function of the normalized bulk modulus ðB̄Þ.
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modulus stated in Eq. (A.3) is derived to be

ZcðoÞ ¼ ½ðnþ aÞp=4�f½ðanÞ
1=2
� ð1=anÞ

1=2
�onþa þ ½gnþa

m ðoÞ=m�

�½1þ ðm� 1Þð1=anÞ
1=2onþa�g=DgðoÞ,

DgðoÞ ¼ ½1þ ðanÞ
1=2onþa þ gnþa

m ðoÞ�½1þ ð1=anÞ
1=2onþa�. ðA:4Þ

Appropriately, when g is set equal to zero, Eqs. (A.3) and (A.4) reduce to Eqs. (9) and (13), respectively.
Using Eq. (A.4) the loss factor Zc(o) is computed, as a function of the normalized frequency (o). Employing
the parametric values used in the computation of B̄ðoÞ depicted in Fig. A4, the computed data of the loss
factor Zc(o) are presented in Fig. A5a. The corresponding provided data for the loss factor Zc(o) are
superposed on Fig. A5a. Notwithstanding a different disposition, the matching between the two data sets in
Fig. A5a is not improved over that presented in Fig. A3. The matching in Fig. A5a, however, could be
significantly improved were the provided data treated to an octave up-shift in the normalized frequency as well
as to an amplitude adjustment by a factor of (0.8). As Fig. A5b reveals this kind of improvement, between the
computed data and the provided data, is available also for the corresponding wicket plot [7]. The provided
data and the computed data, of B̄ and of Zc to construct Fig. A5b are derived from Figs. A4 and A5a. In the
wicket plot, naturally, the up-shift is in the value of the normalized bulk modulus B̄ not in the normalized
frequency (o). Are these observations meaningful to the design of a coating? An oblique answer to the
question may proceed as follows: A normalized modulus M̄ is a fundamental characteristic of the coating;
once it is specified and matched the coating is reasonably defined. On the other hand, stemming from the
imposition of causality on that normalized modulus establishes the associated loss factor Z. The authors are
not privy to how the determination of the provided data of Zc(o) were begot. However, once a match is
established between the provided data and the computed data with respect to the normalized bulk modulus
B̄ðoÞ it follows that any discrepancy, between the provided data and the computed data with respect to the loss
factor Zc(o), is a violation of causality. A counter question then arises: Is causality a significant condition in
the design of a coating? To appreciate the question just posed a twosome of figures is offered as closing
remarks. The causality stated in Eq. (10) is performed on the provided data for the normalized bulk modulus
B̄ðoÞ. This bulk modulus is exhibited in both in Figs. A2 and A4. The results of this causal performance are
superposed on Fig. A5a to yield the first of the two figures; i.e., Fig. A6. Notwithstanding the granularity of
the provided data of B̄ðoÞ, the causal results exhibited in Fig. A6 support the computed data rather than the
corresponding provided data for the loss factor Zc(o). In view of the match in Fig. A4, this is comforting, but
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not surprising. In the second of the two figures; i.e., Fig. A7, the sensitivity of the computed normalized
bulk modulus B̄ðoÞ and its associated loss factor Zc(o) to variations in the design parameters are examined. In
Fig. A7a, the matched normalized bulk modulus B̄ðoÞ that is depicted in Fig. A4b is compared with a slightly
mismatched normalized bulk modulus. The mismatch in the two sets of computed data in Fig. A7a is
introduced by slight modifications in the three design parameters that were central in the match with the
provided data that is achieved in Fig. A4b. These modifications in the design parameters are the range
parameter (an) is changed from (600) to (750), the power index (n+a) is changed from (1.17) to (1.00) and the
tweak parameter (g) is changed from (1.55) to (1.40). (Note that changing the power index from (1.17) to
(1.00) amounts to setting (a) ¼ (0) and (n) ¼ (1).) The influence of the mismatch on the normalized bulk
modulus B̄ðoÞ is shown in Fig. A7a. The influence of the mismatch on the associated loss factor Zc(o) is shown
in Fig. A7b. The disposition of the differences between the two sets of computed data in Fig. A7b is
noncommittal. The situation in Fig. A7b is, however, more reminiscent of Fig. A3 than of Fig. A5a.
In Fig. A3, the two sets of data are not reconcilable by either a shift in the normalized frequency, an amplitude
adjustment or both. Yet, in Fig. A5a the two sets of data are reconcilable in that sense. Whether this feature in
Fig. A5a is significant remains unanswered. Nonetheless, it emerges that to ascertain causally the associated
loss factor Z(o) demands that knowledge, of the normalized modulus M̄ðoÞ in the normalized frequency range
of interest, be a priori minimally accurate.
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